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ABSTRACT In this paper interfacial edge crack problems are considered by the application of
the finite element method. The stress intensity factors are accurately determined from the ratio
of crack-tip-stress value between the target given unknown and reference problems. The reference
problem is chosen to produce the singular stress fields proportional to those of the given unknown
problem. Here the original proportional method is improved through utilizing very refined meshes
and post-processing technique of linear extrapolation. The results for a double-edge interface crack
in a bonded strip are newly obtained and compared with those of a single-edge interface crack
for different forms of combination of material. It is found that the stress intensity factors should
be compared in the three different zones of relative crack lengths. Different from the case of a
cracked homogeneous strip, the results for the double edge interface cracks are found to possibly
be bigger than those for a single edge interface crack under the same relative crack length.

KEY WORDS stress intensity factor, single edge interface crack, double edge interface crack,
combination of material, bonded strip

I. INTRODUCTION
Composite materials and bonded structures are widely employed in the modern industrial context.

The mechanical behavior of the bi-material interface is of great significance for industrial application.
Since the presence of cracks affects a structure’s performance and may result in damage, basic studies
about the interface cracks have secured considerable attention. High stress concentration at the bonding
edge corner caused by differences in the elastic properties of its material components may lead to the
initiation of micro-cracks and then propagation. Therefore, the single and double edge interface cracks
will be mainly investigated in this research.

Asymptotic solutions to the singular stress field near the interface corner have not been found until
recently[1–9]. However, multiple/oscillatory singularity adds to the difficulty in determining the stress
intensity factors of the interfacial cracks. It was only shortly before that various numerical methods
have been reported to determine the stress intensity factors of an interface crack. Specifically, Wu[10]

suggested calculating the stress intensity factors at the tip of an interface crack based on an evaluation of
the J-integral by the virtual crack extension method. Yang and Kuang[11] established a path independent
contour integral method for the stress intensity factors of the interface crack. Munz and Yang[12] used
the FE-method to analyze the stress singularities at the interface for a rectangular bi-material bonded
plate subjected to two loading conditions. Dong et al.[13] proposed procedures for stress intensity factor
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Fig. 1. (a) Single edge interface crack, (b) double edge interface crack in a bonded strip and (c) bi-material bonded strip
without crack.

computation using traction singular quarter-point boundary elements. Liu et al.[14] developed a simple
and effective numerical method to calculate the stress intensity factors for an interface crack with one or
two singularities. Oda et al.[15] extended the crack tip method[16] to solving the interface crack problems
by using the ratio of crack-tip-stress value between the given unknown and reference problems. Here,
the reference problem is chosen to produce the singular stress fields proportional to the ones of given
unknown problems.

In the authors’ previous research, Noda et al. investigated the stress intensity factors of an edge
interface crack in a bonded dissimilar semi-infinite plane[17]. Then Lan et al. discussed the effect of the
material combination and the relative crack lengths of the stress intensity factors of a single edge cracked
bonded strip[18]. As a further research on the authors’ previous work, the study object is extended to
the double edge interface crack of a bonded strip. In this paper the stress intensity factors for a bi-
material bonded strip with single and double edge interface cracks as shown in Figs.1(a) and (b) will
be examined using the improved proportional method. The stress intensity factors will be computed
and listed by varying different forms of combination of materials and relative crack lengths. Then the
values for the two different types of cracks will be compared for the whole range of combination of
materials (0 ≤ α ≤ 0.95,−0.2 ≤ β ≤ 0.45) and relative crack lengths (0 ≤ a/W ≤ 0.9). The effect of
the relative crack lengths and material mismatch parameters are of special interest in this paper. It
will be shown that the stress intensity factors of a double edge interface crack may be possibly larger
than those of a single edge interface crack for some specific combination of materials and relative crack
lengths different from the case of a cracked homogeneous strip.

II. THE ANALYTIC METHOD
2.1. Physical Background

Recently, an effective method has been proposed for computing the stress intensity factors in a
cracked homogeneous plate[16]. Then, the method was successfully extended to the interfacial crack
problems[15]. Both methods utilize the stress component values at the crack tip computed by the FEM.
For a given bi-material bonded structure, the stress intensity factors are defined as shown in Eq.(1)[19]:

σy + iτxy =
KI + iKII√

2πr

( r

2a

)iε

, r → 0 (1)

where, σy, τxy denote the stress components near the crack tip. r is the radial distance from the crack
tip, and ε is the bi-elastic constant given by

ε =
1

2π
ln
κ1/G1 + 1/G2

κ2/G2 + 1/G1
(2)

κm =

⎧⎨
⎩

3− 4νm (plane strain)
3− νm
1 + νm

(plane stress)
(m = 1, 2) (3)
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where Gm (m = 1, 2) and νm (m = 1, 2) are the shear moduli and Poisson’s ratios of either material,
respectively. The real and imaginary parts of the oscillatory stress intensity factors KI + iKII in Eq.(1)
can be separated as

KI = lim
r→0

√
2πrσy

(
cosQ+

τxy
σy

sinQ

)
(4)

KII = lim
r→0

√
2πrτxy

(
cosQ−

σy
τxy

sinQ

)
(5)

Q = ε ln
( r

2a

)
(6)

For the two interface crack problems C and D shown in Figs.2(a) and (b), suppose they have the
same crack lengths (half length) a = a0 and the same combination of materials ε = ε0. Examining the
points along the interface with the same radial distances r = r0 for the two problems C and D, gives

[Q∗]C = [Q]D = ε0 ln

(
r0
2a0

)
. By recalling Eqs.(4) and (5), a proportional relationship given in Eq.(7)

is established if and only if Eq.(8) can be satisfied,

[KI]D
[K∗I ]C

=
[σy]D[
σ∗y
]
C

=
[σy0,FEM]D[
σ∗y0,FEM

]
C

,
[KII]D
[K∗II]C

=
[τxy]D[
τ∗xy
]
C

=
[τxy0,FEM]D[
τ∗xy0,FEM

]
C

(7)

[
τ∗xy
σ∗y

]
C

=

[
τxy
σy

]
D

,

[
τ∗xy0,FEM

σ∗y0,FEM

]
C

=

[
τxy0,FEM

σy0,FEM

]
D

(8)

Fig. 2. Demonstration of (a) the reference problem (problem C) and (b) a given unknown problem (problem D).

Assume the stress intensity factors of problem C are given in advance and denote problem C as the
reference problem, those of problem D are unknown and left to be solved (the target unknown problem).
Rearranging Eq.(7) gives the stress intensity factors of the target unknown problem (problem D) as

[KI]D =
[σy0,FEM]D [K∗I ]C[

σ∗y0,FEM

]
C

, [KII]D =
[τxy0,FEM]D [K∗II]C[

τ∗xy0,FEM

]
C

(9)

Here, σ∗y0,FEM, τ
∗

xy0,FEM and σy0,FEM, τxy0,FEM are the stress components at the crack tip computed
by FEM of the reference and target unknown problems, respectively.
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2.2. Determination of the Reference Problems

In this study, a central cracked bonded dissimilar half-plane subjected to remote uniform tension
σ∞y = T and τ∞xy = S as shown in Fig.2(a) is treated as the reference problem. And its stress intensity
factors are given by the theoretical solution as

K∗I + iK∗II = (σ∞y + iτ∞xy)
√
πa(1 + 2iε), σ∞y = T, τ∞xy = S (10)

Let σ∗T=1,S=0
y0,FEM , τ∗T=1,S=0

xy0,FEM and σ∗T=0,S=1
y0,FEM , τ∗T=0,S=1

xy0,FEM denote the stress components of the bonded
dissimilar half-plane shown in Fig.2(a) subjected to pure remote tension (T, S) = (1, 0) and pure remote
shear (T, S) = (0, 1), respectively. Then, using the principle of superposition, the stress components of
the reference problem shown in Fig.2(a) take the following forms:

σ∗y0,FEM = σ∗T=1,S=0
y0,FEM × T + σ∗T=0,S=1

y0,FEM × S (11)

τ∗xy0,FEM = τ∗T=1,S=0
xy0,FEM × T + τ∗T=0,S=1

xy0,FEM × S (12)

As aforementioned, the condition given in Eq.(8) should be satisfied. Inserting Eqs.(11) and (12)
into Eq.(8) gives the solution of S/T for determining the remote external loads applied to the reference
problem.

S

T
=

[σy0,FEM]D ×
[
τ∗T=1,S=0
xy0,FEM

]
C
− [τxy0,FEM]D ×

[
σ∗T=1,S=0
y0,FEM

]
C

[τxy0,FEM]D ×
[
σ∗T=0,S=1
y0,FEM

]
C
− [σy0,FEM]D ×

[
τ∗T=0,S=1
xy0,FEM

]
C

(13)

When the external load for the reference problem (problem C) σ∞y = T and τ∞xy = S can satisfy
Eq.(13), Eq.(9) can be satisfied. Specifically, let T = 1 so that S can be determined. Inserting T = 1, S
into Eq.(10) gives the exact values of the oscillatory stress intensity factors for the reference problem
(problem C). Finally, the stress intensity factors for the target unknown problem (problem D) can be
yielded using the proportional relationship as given in Eq.(9). Furthermore, the oscillatory terms in
the above discussion will vanish when the two materials are identical, so the current method is also
applicable to cracked homogeneous plate problems.

III. NUMERICAL RESULTS AND DISCUSSION
3.1. Formulation of Single and Double Edge Interface Crack Problems for Arbitrary Combination of
Materials

Regarding the bonded strip of width W and length L shown in Fig.1, the length L of the strip is
assumed to be much greater than the width W (L ≥ 2W ). It is composed of two elastic, isotropic and
homogeneous strips that are perfectly bonded along the interface. And the strip is subjected to a remote
uniform tensile stress σ. The material above the interface is termed material 1, and the material below
is termed material 2. Consider the bi-material bonded plate shown in Fig.1(c). It is assumed that a
single edge crack shown in Fig.1(a) and a double one shown in Fig.1(b) with a crack length of a have
initiated at the free edge corner of the bonded plate.

The stress intensity factors for the aforementioned problems in plane strain or plane stress are only
determined on the two elastic mismatch parameters α and β (also known as Dundurs’ material composite

parameters, Dundurs, 1969). And the Dundurs’ material composite parameters are defined as

α =
G1 (κ2 + 1)−G2 (κ1 + 1)

G1 (κ2 + 1) +G2 (κ1 + 1)
, β =

G1 (κ2 − 1)−G2 (κ1 − 1)

G1 (κ2 + 1) +G2 (κ1 + 1)
(14)

where, the subscripts denote material 1 or 2,Gm = Em/[2 (1 + νm)] (m = 1, 2),Gm, Em and νm denote
shearmodulus,Young’smodulus andPoisson’s ratio formaterialm, respectively.κm = (3− νm)/(1 + νm)
for plane stress and κm = (3− 4νm) for plane strain. The parameter α is positive when material 2 is more
compliant than material 1, and is negative when material 2 is stiffer than material 1. In this research,
only the stress intensity factors for β ≥ 0 in α-β space shown in Fig.3 have been investigated since
switching materials 1 and 2 (mat1 ⇔ mat2) will only reverse the signs of α and β ((α, β)⇔ (−α,−β)).
Furthermore, in order to facilitate discussion, all the stress intensity factors are normalized using the
following equations:

FI =
KI

σ
√
πa

, FII =
KII

σ
√
πa

(15)
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Fig. 3. α-β space for material composite parameters.

Fig. 4. FE mesh demonstration of the geometry of a single edge cracked strip (the target unknown problem).

3.2. Numerical Verification for the Single and Double Edge Crack Problems

The robustness and accuracy of the current method in treating the single and double edge cracked
problems are investigated. MSC.MARC 2007 r1 finite element analysis package is used in this research.
Four-node quadrilateral elements are employed to mesh the reference and the target unknown problems.
Figure 4 shows the FE mesh type for a single-edge cracked homogeneous strip (target unknown problem).
As can be seen from this figure, the meshes in the vicinity of the singular zone are subdivided in a
self-similar manner. And the element size for each inferior layer is one-third of that of the superior one.

The stress intensity factors for the extremely deep crack cases (a/W = 0.8) of a single and a double
edge cracked homogeneous strips are plotted against the minimum element size of the FE model in

Fig. 5. Variations of the normalized stress intensity factors FI = KI/(σ
√

πa) with minimum element size of the FE model
for the (a) single and (b) double edge cracked bonded strips.
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Fig. 6. Variations of the normalized stress intensity factors. (a) FI = KI/(σ
√

πa) and (b) FII = KII/(σ
√

πa) with minimum
element size e for a bonded strip a/W = 0.8 subjected to uniform tension.

Figs.5(a) and (b), respectively. As can be seen from the figures, accurate results can be obtained using
linear extrapolation. The values for other relative crack lengths of the two types of cracks are tabulated
and compared with those predicted by Kaya[20], Noda[21] and Nisitani[22] in Table 1, respectively. It
can be seen from the table that the extrapolated results in this research and those of Kaya[20], Noda[21]

and Nisitani[22] are in very good agreement.

Table 1. Normalized stress intensity factors KI/(σ
√

πa) for the single and double edge cracked homogeneous strips

Single edge crack Double edge crack
a/W

Present Ref.[20] Ref.[21] Present Ref.[22]

0.1 1.189 1.1892 1.189 1.117 1.117
0.2 1.367 1.3673 1.367 1.112 1.112
0.3 1.659 1.6599 1.659 1.115 1.115
0.4 2.111 2.1114 2.111 1.132 1.132
0.5 2.824 2.8246 2.823 1.169 1.169
0.6 4.031 4.0332 4.032 1.236 1.236
0.7 6.352 6.3549 6.355 1.353 1.353
0.8 11.946 11.955 11.95 1.573 1.574
0.9 34.593 34.633 34.62 2.115 2.116

Table 2. Normalized stress intensity factors for a single edge cracked bonded strip shown in Fig.1(a) (G2/G1 = 4, ν1 = ν2 = 0.3,
plane stress)

FI = KI/(σ
√

πa) FII = KII/(σ
√

πa)
a/W

Present Ref.[23] Ref.[24] Ref.[25] Present Ref.[23] Ref.[24] Ref.[25]

0.1 1.209 1.199 1.201 1.209 −0.2393 −0.237 −0.238 −0.239
0.2 1.368 1.368 1.387 1.368 −0.250 −0.251 −0.254 −0.250
0.3 1.653 1.655 1.653 1.654 −0.288 −0.288 −0.288 −0.288
0.4 2.100 2.102 2.100 2.101 −0.359 −0.358 −0.359 −0.359
0.5 2.805 2.806 2.807 2.807 −0.484 −0.483 −0.483 −0.483
0.6 3.998 4.001 4.000 4.006 −0.716 −0.714 −0.716 −0.716
0.7 6.285 6.298 6.298 6.304 −1.207 −1.204 −1.209 −1.208
0.8 11.770 11.780 11.785 11.82 −2.532 −2.515 −2.534 −2.538

Figures 6(a) and (b) show the variation of the normalized stress intensity factorsFI = KI/(σ
√
πa) and

FII = KII/(σ
√
πa) for a single edge cracked dissimilar bonded strip a/W = 0.8. The elastic parameters

are restricted to G2/G1 = 4, ν2 = ν1 = 0.3 and plane stress condition is assumed in the analysis. As
can be seen from Fig.6(a), a linear relationship can be observed for the case of KI/(σ

√
πa). However,
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Table 3. Normalized stress intensity factors for a double edge cracked bonded strip shown in Fig.1(b) (ν1 = ν2 = 0.3, plane
stress)

E2/E1 = 2 E2/E1 = 4 E2/E1 = 10 E2/E1 = 100
a/W

KI/(σ
√

πa) KII/(σ
√

πa) KI/(σ
√

πa) KII/(σ
√

πa) KI/(σ
√

πa) KII/(σ
√

πa) KI/(σ
√

πa) KII/(σ
√

πa)
0.1 1.131 −0.128 1.164 −0.241 1.212 −0.350 1.264 −0.447
0.2 1.115 −0.119 1.122 −0.219 1.132 −0.309 1.142 −0.382
0.3 1.115 −0.112 1.113 −0.204 1.112 −0.284 1.1109 −0.347
0.4 1.131 −0.106 1.128 −0.193 1.124 −0.268 1.120 −0.325
0.5 1.168 −0.103 1.166 −0.188 1.163 −0.259 1.159 −0.315
0.6 1.236 −0.104 1.235 −0.189 1.235 −0.261 1.234 −0.318
0.7 1.354 −0.111 1.356 −0.202 1.358 −0.280 1.361 −0.342
0.8 1.575 −0.133 1.580 −0.243 1.586 −0.338 1.591 −0.414
0.9 2.118 −0.207 2.122 −0.380 2.128 −0.531 2.133 −0.652

no simple linear behavior is observed for the case of KII/(σ
√
πa) in Fig.6(b). It should be noted that a

post-processing technique of linear extrapolation is used to compute both the values of FI = KI/(σ
√
πa)

and FII = KII/(σ
√
πa) in this research. The extrapolated values of other relative crack lengths are

tabulated in Table 2 together with those of Matsumto[23], Yuuki[24] and Ikeda[25]. Table 2 illustrates
that the stress intensity factor values computed by the current method are in very good agreement with
those predicted by Matsumto[23] , Yuuki[24] and Ikeda[25]. And the worst computational errors relative
to those of Ikeda are error (KI/(σ

√
πa)) = 0.13% and error (KII/(σ

√
πa)) = 0.03% for the deep edge

crack case a/W = 0.8.
The stress intensity factors for a double edge cracked bonded strip shown in Fig.1(b) are tabulated

in Table 3. Linear extrapolation is also employed for this case. The results in Table 3 are new and with
no published data to be compared with them. As shown in the previous examples, the current method
is found to produce accurate numerical values for mode I cracks; and therefore, Table 3 is also reliable.

3.3. Stress Intensity Factors for the Single and Double Edge Interface Cracks in a Bonded Strip

In this section, the stress intensity factors at the crack tip for a double edge interface crack in a
bi-material bonded strip are systematically investigated for various material combinations and crack
lengths. For the case of a single and a double edge cracked homogeneous strips shown in Fig.7, it is well
known that the stress intensity factors of the single crack are always no smaller than those of the double
crack. However, this law should not be always true of the case of interfacial cracks. The stress intensity
factors for the single and double edge interface cracks will be compared for arbitrary combinations of
materials in the following section.

Fig. 7. (a) Single and (b) double edge cracks in homogeneous strips.

3.3.1. Stress intensity factors for the double edge interface cracks within the zone of free-edge

singularity

In the authors’ previous research, it has been confirmed that the normalized stress intensity factors
within the zone of free-edge singularity for a single edge cracked bonded strip exhibit a linear double
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logarithmic relationship with the relative crack length a/W [17]. Here, what is of interest is mainly the
double edge interface cracks. The stress intensity factors will be investigated by varying the relative
crack length a/W , as well as the material composite parameters α and β. Then the stress intensity
factors for those two interfacial cracks will be compared systematically. We restrict our discussion to
the material combinations with β = 0.3, and the same phenomenon can be found from other forms of
combination of material. The double logarithmic distributions of the normalized stress intensity factors
FI and FII for the single and double edge interface cracks are plotted against a/W as shown in Figs.8(a)
and (b), respectively. The values of FI, FII for the double edge interface cracks are plotted in solid
curves and those for the single edge interface cracks are plotted in dashed ones. From Fig.8, it can be
found that, similar to the case of the single edge interface crack, the double logarithmic distributions of
FI, FII for a double-edge cracked bonded strip also exhibit linearity when a/W < 0.01. Furthermore,
the slopes corresponding to the same material composite parameters for the two crack cases are totally
identical, and they are equal to the singular index λ− 1 of the perfectly bonded strip without a crack
as shown in Fig.1(c). This proves that the singular zone for a shallow edge interface crack is controlled
by the stress state near the interface corner of the corresponding un-cracked bonded strip. Recently the
singular field at the interface corner for a bonded strip as shown in Fig.9(a) has been studied in several
publications[1–9]. If an interface crack is introduced as shown in Fig.9(b), the stress intensity factors
are controlled by the stress states near the corner in which the free edge intersects the interface.

Fig. 8. Double logarithmic distributions of (a) FI = KI/(σ
√

πa) and (b) FII = KII/(σ
√

πa) for the single and double edge
interface cracks.

The double logarithmic discussion about the case of a single edge interface crack in Ref.[17] is also
applicable to the case of a double edge interface crack. An empirical function as Eq.(16) was proposed
to compute FI, FII of a single edge interface crack within the singular zone of a bonded strip[17]. Where
FI, FII are the normalized stress intensity factors, a/W is the relative crack length, 1− λ is the order
of stress singularity for the perfectly bonded strip without crack and CI, CII are constants determined
by the material composite parameters and crack type. It has been proved that Eq.(16) is also suitable
for the double edge crack case by modifying the constants CI, CII. Here, what should be noticed is that
FI, FII are the same within the singular zone for the two types of cracks when α (α− 2β) = 0 (see, the
curve of α = 0.6, β = 0.3, a/W < 0.01 in Fig.8). Detailed information can be found in Ref.[17].

FI · (a/W )1−λ = CI, FII · (a/W )1−λ = CII (16)

For the bonded strip without crack as shown in Fig.9(a), the values of λ can be obtained by solving
the following eigenequations[3,26]:

D (α, β, λ) =
[
cos2

(π
2
λ
)
− (1− λ)

2
]2
β2 + 2 (1− λ)

2
[
cos2

(π
2
λ
)
− (1− λ)

2
]
αβ

+ (1− λ)
2
[
(1− λ)

2 − 1
]
α2 + cos2

(
λπ

2

)
sin2

(
λπ

2

)
= 0 (17)
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Fig. 9. (a) Free edge singularity of an un-cracked bonded strip and (b) crack tip singularity of a shallow edge interface
crack in a dissimilar bonded strip.

where, when singularity exists near the interface corner, λ is the zero of D (α, β, λ) in 0 < Re (λ) < 1
that has the smallest real part. In general,D (α, β, λ) is expected to have several zeros in 0 < Re (λ) < 1.
In all cases where more than one zero of D (α, β, λ) occurs only the smallest one will be exhibited[3]. The
values of λ are computed for arbitrary material composite parameters (α, β) in the authors’ previous
research[17].

Fig. 10. Values of CI, CII of Eq.(16) for single and double edge interface cracks.

The constants CI, CII in Eq.(16) for the double edge crack case are computed for various material
composite parameters. The values of CI, CII are plotted and tabulated against (α, β) in Figs.10(a) and
(b) as well as in Table 4 and Table 5, respectively.

Recalling Eq.(16) and Fig.10, we know the stress intensity factors at the crack tip for the two types
of cracks with the same relative crack length a/W within the singular zone of a bonded strip (shallow
crack, a/W < 0.01) have the following relationships:

FI,Dbl > FI,Sgl, FII,Dbl > FII,Sgl, when α (α− 2β) > 0;
FI,Dbl = FI,Sgl, FII,Dbl = FII,Sgl, when α (α− 2β) = 0;
FI,Dbl < FI,Sgl, FII,Dbl < FII,Sgl, when α (α− 2β) < 0.

where, FI,Dbl, FII,Dbl denote the normalized stress intensity factors within the singular zone for a double
edge interface crack, and FI,Sgl, FII,Sgl denote those for a single edge interface crack.

The size of the zone of dominance of free-edge singularity can be determined in a manner as given
below. The double logarithmic lines for the single and double edge interface cracks under the same
material parameters should be parallel (the line slopes are equal to the order of stress singularity 1−λ).
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Table 4. Tabulated values of CI

α β = −0.2 β = −0.1 β = 0 β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.45

0.05 1.05 1.089 1.116 1.131
0.1 1.002 1.059 1.1 1.139 1.166
0.15 0.945 1.027 1.076 1.135 1.193
0.2 0.994 1.046 1.12 1.209
0.3 0.932 0.98 1.061 1.191
0.4 0.875 0.914 0.987 1.115 1.434
0.5 0.819 0.854 0.913 1.015 1.29
0.6 0.8 0.847 0.92 1.106
0.7 0.75 0.789 0.838 0.954 1.734
0.75 0.729 0.762 0.802 0.892 1.302
0.8 0.7 0.737 0.769 0.838 1.092
0.85 0.674 0.713 0.738 0.791 0.959 1.505
0.9 0.645 0.69 0.709 0.749 0.864 1.083
0.95 0.6 0.667 0.681 0.711 0.791 0.907

Table 5. Tabulated values of CII

α β = −0.2 β = −0.1 β = 0 β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.45

0.05 −0.084 −0.061 −0.027 0.013
0.1 −0.095 −0.08 −0.052 −0.013 0.031
0.15 −0.102 −0.097 −0.075 −0.041 0.006
0.2 −0.11 −0.096 −0.067 −0.022
0.3 −0.132 −0.128 −0.114 −0.082
0.4 −0.146 −0.151 −0.15 −0.135 −0.09
0.5 −0.155 −0.167 −0.174 −0.174 −0.16
0.6 −0.178 −0.191 −0.199 −0.204
0.7 −0.184 −0.202 −0.215 −0.227 −0.29
0.75 −0.186 −0.206 −0.22 −0.235 −0.277
0.8 −0.186 −0.209 −0.224 −0.24 −0.273
0.85 −0.187 −0.211 −0.227 −0.244 −0.271 −0.358
0.9 −0.183 −0.212 −0.229 −0.246 −0.27 −0.307
0.95 −0.175 −0.213 −0.23 −0.248 −0.269 −0.291

Then, by examining the agreement of the slopes of the double logarithmic lines of FI, FII for the two
cases with the theoretical values of 1 − λ computed by Eq.(17) , the size of the singular zone can
be determined. Take β = 0.3 as an example. Extremely good agreement for the two slopes can be
found for a/W < 0.001 and an error within 5% for a/W < 0.01. So, the size of the singular zone
can be roughly decided as a/W < 0.01. The singular zone along the interface in this paper almost
agrees with that obtained by Reedy (1993) for an infinitely long biomaterial bonded strip under tension
(α = −0.8, β = 0)[27]. More computations of the stress intensity factors for 0.001 < a/W < 0.01 are
needed to determine the size of the singular zone accurately.

3.3.2. Stress intensity factors for double edge interface cracks outside the zone of free-edge singularity

The normalized stress intensity factor curves of three typical material combinations shown in Fig.8
are chosen and plotted in Fig.11. As can be seen from the figure, the whole transverse region of the
bonded strip shown in Fig.1(c) can be separated into three different zones. That is, they are denoted
as zones 1, 2 and 3 as shown in Fig.11 for notational convenient. The boundaries of zones 1 and 2 as
well as zones 2 and 3 are roughly defined as 0.01W and 0.1W , respectively. Zone 1 is termed the zone
of dominance of free-edge singularity, and has been discussed in §3.3.1. If the crack length is located in
zone 1 (a/W ≤ 0.01), the stress intensity factors for the two types of cracks can be obtained by Eq.(16).
Zone 2 is regarded as the transitional zone between zones 1 and 3. As can be seen from Fig.11, the stress
intensity factors of a single edge interface crack within zone 3 are always bigger than those of a double
edge interface crack. This phenomenon is caused by the counterbalance effect of the symmetry of the
double edge interface crack. However, when the crack is located in zone 2 (say, 0.01 ≤ a/W ≤ 0.1),
the relationships of the stress intensity factors for the two types of cracks become complex and have
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Fig. 11. Three different zones for a dissimilar bonded strip.

Fig. 12. (a) FI = KI/(σ
√

πa) and (b) FII = KII/(σ
√

πa) for a single and a double edge interface crack (a/W = 0.1).

no unique or clear regular pattern to follow. In this case, the stress intensity factors are determined
by the combined effect of the free-edge singularity and the symmetrical counterbalance. Generally, the
left part of zone 2 is mainly affected by the free-edge singularity and the right part is dominated by the
counterbalance effect. Specifically, FI, FII for a/W = 0.1 (zone 2) are plotted against different forms
of combination of materials in Figs.12(a) and (b), respectively. It can be seen clearly that the stress
intensity factors for a double edge interface crack can still be bigger than those of a single edge crack
for specific forms of combination of materials. Figures 13(a) and (b) show the variation of FI, FII for
a/W = 0.2 (zone 3) for different combination of materials, respectively. Figures 13(a) and (b) show
that the absolute values of FI, FII for a single edge crack are always bigger than those of a double edge
crack.

IV. CONCLUSIONS
The stress intensity factors can be evaluated by using the ratio of numerical solutions of the stress

components computed by an ordinary numerical code (see FEM) for the reference and the target
unknown problems. In this paper, variations of the normalized stress intensity factors FI, FII at the
crack tip of the single and double edge interface cracks in a bi-material bonded strip were investigated
and indicated for various forms of combination of materials and relative crack lengths a/W . Then, those
for the two types of cracks were systematically compared. It was found in this research that the stress
intensity factors for the double edge interface crack also exhibit a similar double logarithmic relationship
as those of the single edge interface crack. Furthermore, the values of the double edge interface cracks
can also be bigger than those of the single edge interface cracks.



Vol. 25, No. 4 Xin Lan et al.: Single and Double Edge Interface Crack Solutions · 415 ·

Fig. 13. (a) FI = KI/(σ
√

πa) and (b) FII = KII/(σ
√

πa) for a single and a double edge interface crack (a/W = 0.2).
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